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Global CO2 emissions and goals challenge all sectors

Electricity and Heat Production
34,97%

Other Energy Industries
4,60%

Other
15,28%

International Aviation
1,90%

Rail
0,50%

Other Transport
21,28%

International shipping
2,70%

Domestic shipping & fishing
0,60%

Manufacturing Industries and Construction
18,18%

Source: Thomas Guesnet. “Energy efficiency of inland water ships - and how to improve it” (2011)



Further reduction of emission limits will force new technologies
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Emission limit value for IWT engines > 130 kW

CO HC NOx PN PT forecast

Source: http://www.ast-suedwest.gdws.wsv.de/wir_ueber_uns/veroeffentlichungen/oeffentlichkeitsarbeit/in
formationsschrift_2005/pdf/Seite-78-79-Abgasgrenzwerte-Dieselmotoren.pdf
https://www.dieselnet.com/standards/eu/nonroad.php#s5



Former and current hydrogen projects aim at niche applications

Alsterwasser

Source: www.hzwei.info, Wikipedia, Sandia National Laboratories

SF Breeze

U212A

high power

50.000 passengers

the most quiet



IWT is a notable mode of transport in Europe
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Currently most hydrogen is produced from fossil fuels

Natural Gas Steam Reforming
48%

Oil-based
30%

Coal Gasification
18%

Electrolysis
4%

Distribution of H2 production on the production lines

Source: Air Products, Joint Research Center



WTT Analysis (2020+): Primary energy consumption strongly depends on 

the way of hydrogen production
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Only full renewable H2 production is CO2competitive in a well to tank 

consideration
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Significant advantages turn out in a well to wheel consideration

Coal electrolysis

Coal reforming
Electricity EU-Mix electrolysis

NG electrolysis

NG reforming

Wind electrolysis
Nuclear electrolysis

Diesel DICI

Source: Joint Research Center



Source: Viadonau, NOW
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Cargo vessel

Technical Data

Dimensions Length 110 m

Width 11.45 m

Max. draught 3.65

Cargo capacity 3285 t

Container capacity 192 TEU

Propulsive 

power

Main engine 1300 kW

Bow thruster 500 kW



Pushed convoy
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Dimensions Length Width Max. draught Cargo capacity

193 m - 268.5 m 11.4 m – 34.2 m Push boat: 1.7 m

Barges: 2.8 m

16000t

Propulsive power
Main engine Bow thruster

3 x 1360kW 2 x 400kW



Rhine ferry

Technical Data

Dimensions Length 35 m

Width 10 m

Max. draught 1 m

Cargo capacity 60 t

Propulsive 

power

Main engine 300 kW



Cabin vessel
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Dimensions
Length Width

Max. draught Passengers
Crew

135 m 11.45 m 2 m 190 45

Propulsive power
Diesel electric engine gensets Propulsion Pumpjets

2 x 994 kW 2 x 383 kW 4 x 300kW 2 x 340 kW



Methanol

Ethanol

Diesel
Gasoline

LPG

LNG

CNG

NG
H2 (350 bar)
H2

H2 (700 bar)

H2 liqH18-DBT
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Gravimetric energy density / MJ/kg

High energy density of Hydrogen is used up by heavy and spacious

storage

Source: Shell Hydrogen Study (2017); Biert, L. v., Godjevac, M., Visser, K., & Aravind, P. (2016). A 

review of fuel cell systems for maritime application; Klell, M. (2010). Storage of Hydrogen in the Pure 

Form;

pure fuel

incl. storage system



From fuel to power – LOHC is complex and spacious

Complexity of fuel conversion

• Requirements - Disadvantages

– Many heat exchangers

– Dehydrogenation system

– Compressor

Complex, expensive, spacious

• Advantages

– Standard simple diesel tanks are sufficient 

for LOHC storage



From fuel to power – Liquid H2 is compact but difficult to handle

Complexity of fuel conversion

• Requirements – Disadvantages

– Heat exchanger

– Evaporator

– Compressor

– Insulation

– Boil-off losses

• Advantages

– No dehydrogenation system

 Conversion less spacious



From fuel to power – Comp. H2 is simple but very spacious

Complexity of fuel conversion

• Requirements – Disadvantages

– Low storage density of gaseous hydrogen

High space demand

• Advantages

– Lowest complexity

 No further steps of conversion

necessary



ICE can be designed for or converted to H2 operation

Picture Source: http://www.yanmarmarine.eu/theme/yanmarportal/uploadedFiles/Marine/productIma
ges/Commercial%20engine/product_commercial_6CXB_M+H%20rating_200_190.jpg

Ignition System
• Sparkplug
• Prechamber

Fuel System
• PFI
• DI

Exhaust gas 
recirculation
• Controls

Engine control unit
• Calibration

Turbocharger
• Dimensions

Valvetrain
• Material
• Timing



Conversion Technologies: Fuel Cell

Source: Biert, L. v., Godjevac, M., Visser, K., & Aravind, P. A review of fuel cell 

systems for maritime application (2016)

Unit LT-PEMFC HT-PEMFC SOFC

Operating temperature °C 40-80 120-180 700-1000

Electrical efficiency LHV 40-60 40-45 50-65

Fuel purity required 99.999% H2 CO<3% Light hydrocarbons (S<20ppm)

Gravimetric power density W/kg 250-1000 80-230 8-80

Volumetric power density W/l 300-1550 60-100 4-32

Life time h 5,000-20,000 10,000-60,000 10,000-40,000

Start-up time <20 s 10-60 min 30 min to hours

Load transients (0 to 100%) <10 s 2-5 min <15 minutes

Cooling Water cooling Water cooling Air cooling

Waste heat recovery - +/- ++



Promising technology applications are identified systematically

• Definition of requirements

• Rating of requirements to their ship-specific relevance



Promising technology applications are identified systematically

• Analysis of technical features for storage and converters separately

• Storage and converter 

combinations are evaluated



Conditions for the exemplary calculation of a cargo vessel 

Route

• Antwerpen  Mainz

• 2 * 542 km = 1084 km

• Driving time: 36 h

• Propulsion power in kW:

Rhine Rhine Tributary

Canal

Upstream Downstream Upstream Downstream

700-1300 250 400-600 250 300



Conditions for the exemplary calculation of a cargo vessel 

Antwerp  Mainz

• Total energy needed for one round trip

– Upstream: 44571 kWh

– Downstream: 22286 kWh

– Total: 66857 kWh

• Required amount of fuel

– Total: 2408 kg H2

Investigated storage systems

• Compressed Hydrogen  cH2

• Liquid Organic Hydrogen Carriers 

LOHC

• Liquid Hydrogen  LH2



Comparison of storage systems for selected usecase

Unit cH2 LH2 LOHC

Hydrogen mass kg 2408 2408 2408

Hydrogen volume m³ 61 34 -

Tank volume m³ 207 35 85 / 53 / 43 *

Storage weight t 49 21 56

• Exemplary storage

system for cH2

– 40 ft container:

1021 kg H2

* LOHC storage:

Two separate tanks /

5-chamber tank / diaphragm

tank

Picture Source: ems



Technology packages for selected application cases

• Matrix combination outputs most favorable technologies for each application case

• Conditions for each usecase defines limits and boundaries

• Wide variation of technologies for further evaluations (cost, typical operation profiles, handling etc.)



Legal Situation and Training

• Legal Situation

– Analysis of status quo

– Identification of blank gaps

• Instruction and Training

– Definition of requirements

– Various jobs, levels of education

– Parallels to training in other sectors

Picture Source: NSSGA



Key Take-aways

• Today hydrogen technology is not economic.

• Regarding future trends it is worth introducing this technology.

• Current local distribution of hydrogen sources facilitates this introduction.

• Different technical solutions exist for all application cases.

• Demonstrator projects could further prove the technical concepts.

Picture Source: LabManager



Thank you for your attention.
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